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The problem of complex radiative and convective heat transfer in steady-state 
generalized Couette flow of a nonlinear viscoplastic fluid is examined. 

Problems of radiative and convective heat transfer require considerable effort for 
their solution. The complications due to the radiative component are partially due to its 
dependence on the geometry of the system. In view of this, it is convenient to consider a 
plane generalized Couette flow of fluid. The effect of geometry is easily taken into account 
in this case. We will carry out an analysis of complex heat transfer for a rheologically 
complex heat-conducting medium which attenuates (due to absorption and scattering) and emits 
a flux of radiant energy. 

We consider a laminar flow of nonlinear viscoplastic fluid between two infinite paral- 
lel plates with a constant pressure gradient grad p = A in the channel. The upper isothermal 
plate with temperature T(2) moves in its own plane with constant velocity V. The vectors A 
and V can have the same or opposite directions. The lower, also isothermal, plate with tem- 
perature T(I) is fixed. The distance between the plates is h. 

We assume that the properties of the fluid are independent of temperature; we neglect 
heat conduction along the channel axis. We assume that the fluid is a gray medium. The 
scattering in it is isotropic and coherent; there is no interference nor polarization. 

The y axis is normal to the plates, and the x axis coincides with the lower plate. 
The mathematical problem is then represented by the following system of equations: the equa- 
tion of motion 

d~ _ dp  :~ A,  

d y  d x  (1) 

the rheological equation of state [1] 

the energy transport equation 

1 l ! 

IT! ~ == '~0" -[- (r~p ','~1)'-;" , (2) 

TABLE i. Temperature Distribution in Case of a Predominant 
Contribution of Radiant Energy. R = i00, ~ = i0, 0* = 2 

o(~) 

o,I o.~ 0.3 0,4 [ 0.5 o,~ 0,7 
[ 

0,1 0,2 1,2568 1,4137 1,5309 1,6178i 1,7065 1,7780 1,8413 
0,3 0,2 1,2569 1,4137 1,5310 1,6262! 1,7072 1,7781 1,8414 
0,5 0,2 1,2569 1,4137 1,5312 1,6264' 1,7072 1,778l 1,8418 

0,3 0,5 1,2569 1,4137 1,5310 1,6262 1,7072 1,7781 1,84t4 
(/,3 0,0 1'2569 1,4136 1,5307 1,6262 1,7070 1,7780 1,8413 
0,3 l,O 1,2569 1,4137 1,5314 1,6263 1,7074 1,7783 1,8414 

Pureradia-  1,2568 1,4136 1,5309 1,6262 1,7072 1,7786 1,8412 
tion 

Note: For values o fg  e q u a l t o  and 1,0(~ ) is equal to l a n d  2, respectively, for 
radiation it is I and 2. 

0,8 0,9 

1,8979 1,7513 
1,8987 1,9513 
1,8988 1,9514 
1,8988 ],9513 
1,8988 1,9514 
1,8991 ,9521 

1,8986 ,9512 

) u r e  
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Fig. i Fig. 2 

Fig. i. Effect of relative activity of radiant flux on tempera- 
ture profile (~=i0, 8o =0.2, ~=0.i, e*=2): i) R=0; 2) 0.01; 
3) l; 4) i00. 

Fig. 2. Effect of radiant flux on heat-transfer rate (e* = 2, 
~= i0): i) Pure dissipation; 2) R= 0.01; 3) pure radiation (R = 
0 . 0 1 ) .  

d~T dV d 
0 = ~  + T -- qR" 

dy ~ dy dy (3) 

Here T is the shear stress; ~= dV/dy, shear rate; To, yield stress; Up, an analog of plastic 
viscosity; m, n, rheological nonlinearity parameters (both are real positive numbers); V, T, 
flow velocity and fluid temperature, respectively; %, molecular thermal conductivity. 

Real viscoplastic media are optically thick. Hence, to represent the radiant energy 
flux we use the Rosseland approximation [2] 

16P~T a dT 
qR = 3b n d-'--y ' (4)  

where I is the refractive index; ~, Stefan--Boltzmann constant; bR, Rosseland-average attenu- 
ation coefficient, which includes the absorption and scattering coefficients. 

The heat-transfer problem for a simple Couette flow of Newtonian viscous fluid has 
been treated in a similar way [3]. Problem (1)-(4) is closed by the boundary conditions 

V(O) = O, V(h) = U; T(O) = T ~'), T(h) = T (2). (5) 

Since the properties of the fluid are independent of temperature, we can solve the 
heat transfer and rheodynamic problems separately. Hence, to investigate the heat transfer 
we make use of the known results of investigation of the rheodynamic problem [i]. 

There are five possible, qualitatively different, flow regimes: R1 -- with a quasi- 
solid zone (core) in the flow; R2, R3 -- with the core adjacent to the lower or upper plate, 
respectively; R4, R5 -- with the core going beyond the lower or upper plates. It has been 
established [i] that the flow regime is completely determined by the parameter pair (~, 8o): 

m 

a = ~pU/(Ah~h is a dynamic parameter characterizing the relation between the entrainment of 
the fluid behind the movable plate and the pressure component of the flow; 80 = To/Ah is a 
static parameter characterizing the relation between the ultimate shear stress required to 
exceed the yield stress, and the actual pressure gradient in the channel. 

We introduce dimensionless variables: the coordinate ~ = y/h, the velocity W = V/U, and 
temperature e = T/T(~): Assuming further the constancy of the fluid properties on transition 
from the zone of free flow to the quasi-solid core, and taking into account the signs of T 
and ~ in each flow zone, we derive from (1)-(5), after some algebra, the algebraic equations 
[4] 

O+ ~Ro ~+~mn~(~; ~, Po, ~ ) = 0 "  (6) 
3 

3 n t  

Herex=Afl(Ah)T/k~t~T O) is a dissipative parameter; R=4~l(T(~))a/~b R is the radiation-- 
conduction parameter, which characterizes the relation between radiation and heat conduction. 
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For 

For 

The form of 

regime R2 

regime R3 

I , 1 , 1 I~5{ , , , , ~ i 

F i g .  3. V a r i a t i o n  of  mean f l o w  tem-  
p e r a t u r e  ( ~ = 1 0 .  go = 0 . 2 ,  0 ~ = 0 . 5 ) :  
1) R = 0 ;  2) 0 . 0 1 ;  3) 1; 4) 100.  

functions Cmni 

(:I~m hi= 

h=O 

depends on the flow regime, For regime RI 

• 2 (--1)kF..o,. (~o--~)r + ~(G~--Go.) + ~ [• ir (--1)~F~nh 
h=O h=O 

• { 2 % ( 1 -  ~o) 6~ n- '  4- ~g~ - -  ( 1 - -  ~o) Cn }I--G,- 
( N 

h = 0  

h=O 

co 

-- (1-- ~~162 - G ' - -  •  (--1)'~F'n'~ { - t 3 ~ ' -  

(--1)~Fm,o~ (~ -- ~o) ~h + ~ (G, -- G,a) + ~• 2 (--1)hFmnh X 
h = 0  

h=O 
~,, ~ ~ 1. 

[ < -  c~ + ~ 9~ ( - , ) ~ e ~ o ~  {6> + (~ - ~o - 60) ~ 6 >  -~ - 
h=O 

- -  (1 - -  ~o)~b] - -  G,, o ~< ~ ~< ~, 

h~O s  

x {fi~k _ (~o + 60) q%6g h- '  - -  (1 - -  ~o) ~h} ] - -  G, - -  

ee 

h=O 

(I)Tn .n3 ~--- 

• (__l)kF,~.h(~o--E)'~kq-~[Gt--Gz+• (--1)hFm,~n X 
k = 0  h=-0 

• { - -  6 ~  + ~o,~ (1 - -  ~o + 6o) 6~ ~-~ + ~ }  ] - -  

- - a i - - •  ~ (--1)kFmn~ h, 0 . . ~ g - ~ l ,  
h = 0  

(7) 

(8)  
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Fig. 4. Change in heat-transfer rate 
with increase in relative contribution 
of radiative heat transfer: i) R= 0; 
2) 0.01; 3) 1; 4) i00. 

For regime R4 

1 ~k~', f~(f'lt ~ l l  

- - G , - - •  ( - - )  F..,,, {~h -F([5o--~0)q,~,~'~h-t--[5~"}, ~,-~.~I. 
h==O 

o a  

(I)mn~ = ~ X..  "~ ( - l ) ~ F = " k  (~ - -  ~o)r -I- ~ [ G , -  G2 -k- • Z ( - - l )hF'"a  
k=O k=0 

(9) 

k=0 

(10) 

For regime R5 

(~)mn5 : X ~ (--])kFmnk(~o--~) (pk + ~ [ G , - -  O2"-~- 14 /~._~ TM ( - - ] )  kFmnk 
k=0 k=0 

h=O 

Here ~, 
the plane in which the shear stress is zero: 

r are the dimensionless ordinates of the quasisolid core; ~o is the ordinate of 

}.,, -: ~o (oz, ~Io), ~j, =: ~o -- {~o, ~.~ .... ~o-!- ~., G, :.: I -[- -- 
3 

R 

C m : 

& 2 n 

C.., ~ = 0 *  - F  - ~ -  ( 0 * ) L  F,,,,,,, : =  ( m  --i- 2:z  - -  k)(,n + 3 n  - -  k )  ' 

m(m - -  { ) . . .  ( m - -  k -F I) m -t- 3"z - -  k TI'-'~ 
, epic: : , 41" = :  - -  

nz!  n T( ~ ) 

(11) 

Equations (6) are easily solved numerically by the Newton method: 

R _  0i ! + 0j + (~,,,.,j 
3 

Oj~ , ,=Oj - I -  4 R01}_l_ 1 ' / ~ = 0 '  ] . . . .  

3 
and .  s i n c e  0(r  > 0 .  0 - - < E ~ I .  t h e  d e n o m i n a t o r  o f  t h e  f r a c t i o n  i n  (13) does  n o t  become z e r o  
(j is the iteration number). 

To calculate the temperature gradients on the walls we have the formulas 

(12) 

(13) 
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__ d d:,,,~,,~(0) ---- 

dO i = d~ ' d~-~ t = ' ~ 7 - -  (14) 
d~ ~=o 1-a t. 4 R ~=1 1 + ~  R(0*) 3 

3 

We consider separately three cases: R << !, R~ i, R >> I. In the first case molecular 
heat conduction predominates, in the second case energy transfer by conduction and radiation 
is of the same order of magnitude, and in the third case radiation predominates. When R+ 0 
the temperature profiles are the same as for purely dissipative heat transfer [5]. When 
R§ the temperature field is determined by the second term on the left-hand side of (6). 
The effect of dissipative heat release is negligible (irrespective of the values of m and n) 
for R:R/~I0 (see Table i). 

The radiative component leads to a qualitative change in the temperature distributions. 
The temperature profiles for purely dissipative heat transfer in a flow of nonlinear visco- 
plastic fluid at high shear rates are characterized by convexity, where the fluid temperature 
exceeds the temperature of the hotter plate [5]. For R> 0 the temperature profiles are 
smoother and do not exceed e*, i.e., radiative transfer promotes a more uniform temperature 
distribution in the channel (Fig. i). 

Instead of the traditional Nusselt number Nu, it is more convenient to use the "heat- 
transfer rate" [5]: 

h [~dT" S =  T(2) T(I) ~-~y ] " (15) 

and the heat-transfer characteristic. 

h h 

where  <T> = j" T (y) V (g) dy/ j" V (g) d!t 
0 0 

w a l l  v a l u e .  

Conversion from S to Nu is simple: 

T (2) _ T (t) 
Nu = S, (16) 

< T > - - T w  

is the mean flow temperature; the subscript w indicates a 

The heat-transfer dependence on the relative contribution of the radiant energy flux is 
shown in Figs. 2-4; S- is the heat-transfer rate on the lower plate, and S+ is that on the 
upper plate. 

Figures 2 and 3 shows an interesting feature: When a radiant energy flux appears (R > 
0) in a fluid with constant properties and its contribution to the total heat-transfer pro- 
cess increases (with increase in R) the mean flow temperature <e> (continuous line in Fig. 
2) decreases and <6> becomes less dependent on a, ~o (compare with [5]). As already men- 
tioned, the radiant flux changes the temperature distribution over the channel cross section, 
lowering the temperature in regions of high shear rate, and increasing it in regions of low 
rate. Since the appearance of the additional radiant energy flux (and its increase) has no 
effect on the rheodynamics, the mean velocity 

I 

< W > = f W(~)d~ = const (R) (17) 
0 

for a given set of values of the parameters (~, Bo). The determination of <0> involves 
another quantity 

1 

0 

(18) 

Since the temperature for the region of high velocities decreases with increase in R, 
and increases at low velocities, then, generally speaking, ~ will be a decreasing function 
of R. The same applies for <e> =~/<W>. The reduction of <e> with increase in R is more 
appreciable for a> 0 than for ~ < 0. 

The redistribution ("smoothing") of the temperature greatly affects the heat transfer 
rate. The curves of S(~, ~o), in comparison with the case R=O become smoother and less 
steep (Fig. 4). In the region of low a, where the relative magnitude of the heat flux due 
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to dissipation of mechanical energy is small, ISI increases with increase in R. In the 
region of larger ~, where dissipative heat release is significant, the "smoothing" of the 
temperature leads to reduction of IS I with increase in R. When R § the shape of the S(~) 
curves tends to a straight line parallel to the axis 0~. This conclusion can also be 
directly derived from an analysis of Eqs. (6) and (14). 

The solution of the problem of complex heat transfer for a simple Couette flow of New- 
tonian viscous fluid [3] is obtained from the solution given in this paper as the special 
case where m = n = i, Bo = 0, a § and the dissipative function TdV/dy is averaged over the 
cross section. 

NOTATION 

p, pressure; T, temperature; V, flow velocity; T, tangential shear stress; ~, shear 
rate; y, coordinate normal to plates; ~, Bo,~, R, dimensionless parameters; 6", ratio of 
temperature of upper plate to that of lower; %, thermal conductivity; qR, radiation flux 
density. 
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